organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hao Gao* and Yun Sun

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: ghgaohao@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 113 K Mean σ (C–C) = 0.004 Å R factor = 0.043 wR factor = 0.106 Data-to-parameter ratio = 8.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(4SR)-4-Benzyl-4-hydroxyisoxazolidin-3-one

The title compound, $C_{10}H_{11}NO_3$, was synthesized by the reaction of ethyl 3-aminoxy-2-benzyl-2-hydroxypropanoate with potassium hydroxide. It was found to crystallize with two independent molecules in the asymmetric unit. In the crystal structure, $O-H\cdots O$ and $N-H\cdots O$ interactions link the molecules into one-dimensional chains along the crystal-lographic *a* axis.

Comment

Tabtoxinine- β -lactam is a natural compound, which inhibits glutamine synthetase, causing chlorosis and death of tobacco plants. In order to synthesize this compound by a new method, a model compound, 3-benzyl-3-hydroxyazetidin-2-one, has been designed. The title compound, (I), is a precursor for this model.

The asymmetric unit of (I) contains two independent molecules (Fig. 1). The dihedral angles between the phenyl planes (C5–C10 and C15–C20) and the isoxazolidine rings (C1/C2/C3/N1/O2 and C11/C12/C13/N2/O5) are 50.0 (5) and 49.3 (4)°, respectively. Considering the crystal packing, O–H···O and N–H···O hydrogen bonds link neighbouring molecules into one-dimensional chains along the [100] direction (Table 1 and Fig. 2). Further analysis of the crystal packing suggests that there are some weak C–H···O interactions stabilizing the packing of (I).

© 2007 International Union of Crystallography The asyn

Received 31 October 2006 Accepted 30 November 2006

All rights reserved

Experimental

The title compound was prepared according to a published procedure (Pohland, 1955). Colourless platelet single crystals were obtained by recrystallization from methanol (m.p. 421 K). Analysis, found: C 62.37, H 5.56, N 7.33%; calculated for $C_{10}H_{11}NO_3$: C 62.17, H 5.74, N 7.25%.

Z = 8

 $D_x = 1.371 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 113 (2) K

Plate, colourless

 $R_{\rm int} = 0.043$

 $\theta_{\rm max} = 27.8^\circ$

 $0.22\,\times\,0.20\,\times\,0.10$ mm

13397 measured reflections

2246 independent reflections

2179 reflections with $I > 2\sigma(I)$

Crystal data

Data collection

Rigaku Saturn diffractometer ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{min} = 0.968, T_{max} = 0.990$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0563P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.043$	+ 0.3587P]
$wR(F^2) = 0.106$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
2246 reflections	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
266 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
H atoms treated by a mixture of	Extinction correction: SHELXL97
independent and constrained	Extinction coefficient: 0.018 (2)
refinement	

Table 1

Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} N1 - H1 \cdots O1^{i} \\ O3 - H3 \cdots O1^{ii} \\ N2 - H2 \cdots O4^{ii} \\ O6 - H6 \cdots O4^{i} \end{array}$	0.84 (3) 0.84 (4) 0.99 (3) 0.90 (4)	1.94 (3) 1.97 (4) 1.80 (3) 1.92 (4)	2.786 (3) 2.813 (3) 2.784 (3) 2.805 (3)	176 (3) 177 (3) 170 (3) 166 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z$.

In the absence of significant anomalous dispersion effects, Friedel pairs were merged. H atoms bonded to heteroatoms were located in a

Figure 2

Packing diagram for (I) with hydrogen bonds drawn as dashed lines, as viewed along the [010] direction.

difference map and their positional parameters were refined using a riding model, with $U_{iso}(H) = 1.5U_{eq}(N,O)$. Other H atoms were positioned geometrically and refined using a riding model, with C–H bond lengths constrained to 0.95 (aromatic CH) or 0.99 Å (methylene CH₂), and $U_{iso}(H) = 1.2U_{eq}(\text{carrier C})$.

Data collection: *CrystalClear* (Rigaku/MSC, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *CrystalStructure* (Rigaku/MSC, 2005).

Financial support by the School of Pharmaceutical Science and Technology, Tianjin University, is gratefully acknowledged.

References

Bruker (1997). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.

Pohland, A. (1955). US Patent 2 762 815.

Rigaku/MSC (2005). CrystalClear (Version 1.36) and CrystalStructure (Version 3.7.0). Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.